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suMHARY 

A three-dimensional, forward-marching, viscous flow analysis is applied to 

the tip vortex generation problem. The equations include a streamwise momentum 

equation, a streamwise vorticity equation, a continuity equation and a secondary 

flow stream function equation. The numerical method used combines a consis- 

tently split linearized scheme for parabolic equations with a scalar iterative 

AD1 scheme for elliptic equations. The analysis is used to identify the source 

of the tip vortex generation process, as well as to obtain detailed flow results 

for a rectangular planform wing immersed in a high Reynolds number free stream 

at 6 degree incidence. 



INTRODUCTION 

Among the problems of rotor aerodynamics which still require further 

investigation is the three-dimensional viscous flow field occurring in the 

vicinity of the rotor tip. The tip region contains a complex three-dimensional 

viscous flow field which results from the unequal pressures on the upper and 

lower surfaces on a lifting airfoil. This unequal pressure distribution causes 

a secondary flow to develop around the tip from the pressure to the suction 

surface. The details of the flow in the tip region can have a major effect 

in determining the generated rotor noise and can significantly affect the 

performance and dynamic loading of the rotor blade. In addition, the tip 

vortex generated by a given blade may impinge upon the following blade signifi- 

cantly modifying the oncoming flow encountered by the following blade, thus 

affecting the following blade's performance. Another area in which a tip 

vortex plays an important role may be found in flow about wing tips of large 

aircraft and a similar phenomenon involving a somewhat different physical 

mechanism can be found in flow over a delta wing. In the former case the 

vortex generated by the wings of a large aircraft can cause hazardous condi- 

tions for following aircraft encountering the tip vortex wake. In the latter 

case the leading edge vortex plays a major role in determining the performance 

of delta wings. 

To date most efforts which have focused upon the tip flow field problem 

have been either experimental investigations which for the most part have been 

confined to regions downstream of the blade or analytic efforts which for the 

most part have been confined to inviscid analyses. For example Scheiman, 

Megrail and Shivers (Ref. 1) utilized a tuft grid technique to investigate 

the vortex downstream of a fixed airfoil. Although their investigation showed 

the problem to have a definite Reynolds number effect on core size, they were 

not able to define a functional relationship between core size and lift, drag 

or induced drag. Thompson (Ref. 2) used a tow tank and hydrogen bubble 

technique to study axial flow in wing tip vortices downstream of the airfoil 

trailing edge. Spivey and Morehouse, in Ref. 3, compared the performance of 

swept tip and square tip shapes in both wind tunnels and whirl stand environ- 

ments through flow visualization tests and surface pressure measurements in 
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the blade tip region. Finally, in an investigation which is particularly 

relevant to the helicopter rotor tip problem, Chigier and Corsiglia (Ref. 4) 

placed a hot wire probe in the tip flow field and measured tip region 

velocities both upstream and downstream of the airfoil trailing edge. Although 

not directly related to the helicopter rotor blade problem, numerous other 

studies have focused upon far field wake-vortex characteristics (e.g..Refs. S-7). 

As may be discerned from the previous discussion, most experimental efforts 

in this area have concentrated upon the flow downstream of the airfoil trailing 

edge. Some surface pressure data has been taken on the airfoil itself (e.g., 

Refs. 3 and 4) and some flow field data has been taken upstream of the airfoil 

trailing edge (Ref. 4). However, the flow region usually investigated is in that 

region aft of the airfoil. 

A review of the analytic approaches to this problem shows that for the most 

part these are based upon inviscid formulations. For example, Kandil, Mook and 

Nayfeh (Ref. 8 and 9) and Rehbach (Ref. 10) have applied vortex lattice methods 

to predict vortex roll-up in the region over both rectangular and delta wings. 

An inviscid model of the wake roll-up process has been presented by Portnoy 

(Ref. 11) and Kandil, Atta and Nayfeh (Ref. 12) have extended the procedure of 

Ref. 8 to unsteady flows. Vortex lattice methods such as those in Refs. 8-10 

and 12 have also played an important role in analyzing complex three-dimensional 

inviscid flow fields and have been applied successfully to predict flow about 

wings, ,fuselages and wing-fuselage combinations (Ref. 13). 

Although vortex lattice methods are useful in predicting overall flow 

properties such as lift coefficients, the methods contain some inherent proper- 

ties which preclude their applicability to the more detailed aspects of the tip 

vortex problem. First of all, vortex lattice methods do not satisfy the zero- 

through flow condition at all points in the wing; rather they satisfy the zero 

through flow condition at isolated control points. At locations on the wing 

removed from the control points, significant through flow may be predicted. 

Furthermore, unless they are modified, the construction of vortex lattice methods 

results in large variations in streamwise and spanwise velocities for distances 

closer to the wing than the basic lattice dimension. While neither of these 

characteristics may present serious difficulties in predicting global properties 

such as lift coefficient, they may be more serious if the technique is to predict 
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detailed phenomena such as vortex rollup. Finally, since they are inviscid, the 

vortex lattice methods do not approximate in detail the physical mechanisms of 

viscous generation of vorticity at flow boundaries and the subsequent combined 
convection, diffusion and dissipation of vorticity. 

In a somewhat different approach Donaldson, Snedeker and Sullivan (Ref. 14) 

have used the Betz method to analyze the initial wake roll-up process and Bilanin 

and Donaldson (Ref. 15) have extended this model to include general axial 

velocities which vary from the free stream value. The analyses of Refs. 14 and 

15 require as input a vorticity distribution at a station just downstream of the 

airfoil trailing edge and then compute the subsequent roll-up process. These 

analyses do not address the question of roll-up over the wing which is of primary 

interest in the present investigation. 

The limitations which are inherent in vortex lattice methods have motivated 

the development of alternate calculation procedures for the tip vortex problem. 

One such possible procedure would be a solution of the full Navier-Stokes 

equations. Upon hypothesis of a suitable turbulence model the Navier-Stokes 

equations contain all the required mechanisms present in the tip vortex flow 

field and the compressible Navier-Stokes equations have been used to predict 

two-dimensional flow about cylinders and airfoils (Refs. 16-18). However, 

solution of the three-dimensional viscous flow problem in the airfoil tip region 

via the Navier-Stokes equations would require a large number of grid points 

leading to computer storage requirements and/or computer run times which at 

present are not practical. Hence an alternative and more economical viscous 

flow formulation is attractive and was adopted in the present investigation. 

Although flow situations do exist which require a solution of the full 

Navier-Stokes equations, the tip flow field contains simplifying features which 
alleviate the need for a full Navier-Stokes analysis. In particular the 

tip flow field contains a primary flow direction which is known a priori. In 

addition, derivatives with respect to this direction are considerably less than 

derivatives normal to this direction. For flows of this type an extension of 

classical two-dimensional boundary layer theory may prove to be an efficient, 

accurate and powerful mode of attack. 

Over the past few years, several approaches have been devised for forward 

marching solution of three-dimensional viscous flows using an extended boundary 
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layer approach. Patankar and Spalding (Ref. 19) Caretto, Curr and Spalding 

(Ref. 20) and Briley (Ref. 21) have suggested numerical methods for solving 

governing equations based upon extensions of concepts from three-dimensional 

boundary layer theory. The analyses of Refs. 19-21, which concentrated upon the 

problem of laminar flow in a duct of rectangular cross section, were distinguished 

by two primary features. In these analyses the governing equations were solved 

by forward marching in the primary flow direction while retaining viscous forces 

in both transverse directions and the pressure was divided into two components; 

an imposed component which was specified a priori and a viscous correction which 

emerged from the solution. Other studies of this general type include those of 

Rubin and Khosla (Ref. 22) for the fully viscous region of a straight rectangular 

duct, Ghia and Sokhey (Ref. 23) for flow in curved passages, and Dixon and 

Sampath (Ref. 24) who investieated the leading edee vortex eeneration nrocess 

for a delta wing. 

This same general approach was applied to the tip vortex flow problem by 

Hall, Shamroth, Briley and McDonald (Ref. 25). In Ref. 25 a doublet lattice 

method was used to generate a pressure field and this pressure field was used as 

the imposed pressure field for the viscous analysis. The viscous analysis solved 

a set of three momentum equations in conjunction with the continuity equation 

via a forward marching calculation procedure. The three velocity components 

as well as a "viscous pressure correction" emerged from the solution. The 

results presented in Ref. 25 showed the expected boundary layer development on 

the airfoil pressure, suction and tip surfaces with the generally expected flow 

pattern from the pressure to suction surface about the tip. In addition the 

analysis predicted the development of a "circular flow pattern" above the 

airfoil suction surface where the vortex was expected to appear. However the 

predicted cross flow velocities were quite low. 

Recently a new approach for the prediction of three-dimensional viscous 

subsonic flows with large secondary velocity has been developed by Briley and 

McDonald (Ref. 26). This new approach synthesizes concepts from inviscid flow 

theory, extended boundary layer theory and classical secondary flow theory to 

produce a procedure capable of predicting flow fields having a primary flow 

direction with significant cross flows in the secondary flow planes. In Ref. 26 

Briley and McDonald applied the analysis to three-dimensional flow in a curved 
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passage and predicted the development of the passage flow field including the 
generation of the passage vortex and the subsequent migration of the passage 

vortex to the suction surface corner flow region. In the present effort a 

variation of this approach is'developed for the tip vortex flow field problem 

and is used to generate predictions of the tip vortex generation process. The 

present analysis utilizes a primary flow velocity field determined by the 

vortex lattice method of Kandil, Mook and Nayfeh (Refs. 8, 9>, which serves as 

a first approximation to the streamwise velocity and which represents the sole 

influence of elliptic effects needed for the viscous forward marching calcula- 

tion. Although the inviscid vortex lattice method of Refs. 8 and 9 predicts a 

three-dimensional flow field as well as the amount of vorticity shed at each 

streamwise location, for the reasons mentioned earlier, the present analysis 

utilizes as input only the predicted streamwise velocity. The analysis then 

solves approximate viscous streamwise momentum and vorticity equations in con- 

junction with surface scalar and vector potential calculations to correct the 

assumed streamwise velocity component and predict the secondary flow velocities 

including the shed vorticity. 
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ANALYSIS 

General 

The analysis of three-dimensional viscous flow fields such as that in the 

airfoil tip region presents a very difficult task for the computational fluid 

dynamicist. One possible mode of attack would solve the full three-dimensional 

Navier-Stokes equations. Although successful calculations of the compressible 

three-dimensional Navier-Stokes equations have been made for rectangular ducts 

(Ref. 27) and three-dimensional combustors (Ref. 28), these solutions of 

necessity require both relatively large computer storage and relatively long 

run times and although they have reached the point where they can be used to 

analyze flow fields, they are most attractive when no suitable alternative 

exists. In the airfoil tip flow field problem a three-dimensional Navier-Stokes 

analysis would require a large enough number of grid points to determine the 

pressure distribution as well as to calculate the thin viscous flow regions in 

the immediate vicinity of the airfoil surface. With present computers the 

number of grid points required for such a task could be prohibitive with regard 

to both computer storage facilities and computer run time. Thus an alternative 

and more economical calculation procedure is attractive. 

One promising alternative method would be a three-dimensional viscous 

flow forward-marching analysis. Such techniques have been developed for flows 

which satisfy two requirements; (i) they must have an approximate primary flow 

direction which can be specified a priori and (ii) flow derivatives in this 

approximate primary direction must be considerably smaller than flow deriva- 

tives normal to this direction. Obviously, the tip flow field satisfies these 

requirements. Procedures for computing such flows have been developed by 

Patankar and Spalding (Ref. lq), Caretto, Curr and Spalding (Ref. 20) and 

Briley (Ref. 21) for three-dimensional rectangular duct flows. More recently 

Briley and McDonald (Ref. 26) have synthesized the concepts developed in Refs. 

19-21 with secondary flow theory to develop a three-dimensional viscous forward 

marching analysis suitable for computing flows with large streamwise vorticity. 

When applied to the curved rectangular passage problem, the analysis predicted 

the formation and development of a passage vortex and the experimentally 

observed migration of the vortex to the suction surface corner. The computed 

limiting streamlines on the suction surface and endwall were in qualitative 
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agreement with experimental observations. In view of these encouraging results, 

this same general procedure has been modified under the present effort so as 

to apply to the tip flow field generation problem. 

Outline of the Analysis 

A major objective of the analysis is to approximate the Navier-Stokes 

equations in a manner which suppresses streamwise elliptic effects requiring 

downstream boundary conditions, thus permitting solution by forward marching 

integration. This is accomplished in part by neglecting terms which represent 

streamwise viscous diffusion, a very reasonable assumption for the tip vortex 

flow field. In addition, the elliptic behavior associated with the pressure 

field in subsonic flow is suppressed by decomposing the velocity field into 

two components and then making separate assumptions for each component. 

The velocity vector field i is decomposed into two components: a primary 

component C 
P 

and a secondary component, fis where 

Equation (1) does not imply any approximation or assumption and simply repre- 

sents an alternative method for expressing the velocity field. The component 

ip is the product of two factors termed the subcomponents CI and uv; i.e., 

where EI is a given approximate inviscid flow velocity vector and uv is a 

scalar profile factor determined by the analysis. As discussed subsequently, 

6, incorporates streamwise elliptic effects, is obtained from another analysis, 

and is used as input for the present analysis. The second contribution cs is 

a secondary flow contribution which, following Ref. 26, is further decomposed 

into two portions ii 
$ 

and 6 
4' 

The portion cJI is obtained by solving an approxi- 

mate equation for the growth of streamwise vorticity followed by an approximate 

vector potential calculation in transverse planes. The second portion fro satis- 

fies the continuity equation and is determined by a scalar potential calculation. 

It will be shown that the portion fi+ does not enter into the continuity balance 
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and the portion c9 is independent of the streamwise vorticity. The use of 

approximate scalar and vector potential calculations rather than full three- 

dimensional scalar and vector potential calculations, together with the use of 

imposed streamwise pressure gradients determined from SI, serves to suppress 

streamwise elliptic effects requiring downstream boundary conditions and permits 

forward marching solution. 

In the original three-dimensional forward marching analysis (Ref. 26), the 

equations are derived for an arbitrary coordinate system for which the marching 

coordinate is normal to transverse surfaces. In the general case, the direc- 

tions of the primary velocity and that of the marching coordinate need not be 

identical and may be only approximately aligned. If the primary velocity, fi 
P' 

is not aligned with the marching coordinate, it will not be perpendicular to 

the secondary velocity component, es, which lies in transverse coordinate 

surfaces. 

In the present application to the tip vortex generation problem, the direc- 

tions of up and the marching coordinate coincide with the Cartesian x direction 

and Gs lies in the Cartesian y-z plane. In other words, the primary, marching 

and streamwise directions coincide with the Cartesian x-direction, and the 

secondary flow plane is the transverse y-z plane. Therefore, the description 

of the analysis which follows develops the equations and relations for a Car- 

tesian coordinate system. The more general development is presented in Ref. 26. 

The Velocity Field 

The Primary Velocity 

The primary velocity, i 
P' 

is the product of an inviscid velocity vector, 

VI, and a scalar profile factor, u 
V' 

which modifies the inviscid profile as 

required by viscous effects. The inviscid velocity represents a first approxi- 

mation to the component of the velocity field in the primary flow direction and 

must contain those elliptic effects which are required in representing the flow 

field. If available, the imposed velocity field can include a first approxima- 

tion to the secondary flow field and an estimate of the shed vorticity. In the 

present effort, the inviscid velocity approximation is obtained from the analy- 

sis of Kandil, Mook and Nayfeh (Refs. 8 and 9). In brief, their analysis 
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is a vortex lattice method in which the wing is divided into a series of panels. 

Each panel has a vortex filament associated with it consisting of a vortex line 

in the spanwise direction and two vortex lines in the streamwise direction, one 

at each end of the spanwise segment. The vortex lines are bound to the wing 

except for those leaving the tip and trailing edge which are allowed to reach an 

equilibrium position as they are convected by the flow field which they them- 

selves generate. Details of the procedure are available in Refs. 8 and 9. 

In the process of developing the tip vortex analysis, the present authors 

carefully examined the inviscid velocity field generated by the vortex lattice 

calculation. It was found that, although the streamwise component (see Fig. 1) 

was well-behaved, the predicted secondary flow pattern displayed rapid (almost 

discontinuous) changes resulting from vortex singularities used in constructing 

the flow. Although it is possible to use Rankine vortices rather than singular 

potential vortices in constructing the solution, proper determination of the 

size of the Rankine vortex core is uncertain. In addition, a sample run 

indicated that, although using Rankine vortices did improve the secondary flow 

distribution, areas of rapid change still remained. It is believed that the 

presence of rapid changes would lead to difficulties in incorporating secondary 

flow components determined by the vortex lattice analysis into a finite 

difference calculation procedure. 

With these considerations the approximate inviscid velocity vector cr is 

taken to be the streamwise component of the velocity obtained from the Kandil- 

Mook-Nayfeh analysis (Refs. 8 and 9) 

q = l”, 
(3) 

where i is the unit vector in the x-direction (the streamwise marching direction). 

Thus 

where i z is specified from the vortex lattice analysis and uv is to be determined 

from the present three-dimensional viscous analysis. It should be noted that if 

an alternate inviscid approximation were available, for example one obtained from 
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a solution of Euler's equations, use of this alternate approximation would be 

straightforward. 

The Secondary Velocity Field 

The second contribution to the overall velocity field is the secondary flow 

contribution, z 
S’ 

which is divided into two parts; 

i&4 +G 
JI + (5) 

where fi 
JI 

and 5 
0 

are defined by vector and scalar potentials respectively. The 

vector potential contribution, fi 
$' 

is given by 

PO uq/ - -pJx:l# 
(6) 

where po is a reference density and p is the local density; for incompressible 

flow p z p 0’ 
The scalar potential contribution is given by 

% = vs+ (7) 

where vs is the surface gradient operator defined by 

% z v -1(O.V) 

which in a Cartesian system is given by 

A a A a 
V, =j,y +kr 

Thus 

% v x ?Ic, 

It should be noted that 

(8a) 

(8b) 

(9) 

h 

i.Us =0 (10) 

and therefore i s is confined to the plane normal to the marching direction. 
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The Governing Equations 

The Cross Flow Equations 

Having defined the primary and secondary velocity components through Eqs. 

(4) and (91, it is now appropriate to consider the governing equations used in 

the analysis. Although one possible set of equations would be the streamwise 

momentum, continuity, transverse momentum and spanwise momentum equations, the 

presetit approach follows Ref. 26 and utilizes the streamwise component of the 

vorticity equation, obtained as the curl of the vector momentum equation. This 

approach eliminates transverse pressure gradient terms for incompressible flow 

and minimizes their influence in compressible flow. 

Since there exists some latitude in choosing the form of the vorticity 

transport equation to be used, the final choice should reflect the physical 

processes present in the particular application. In the curved passage analysis 

of Ref. 26, streamwise flow vorticity is generated primarily from the turning 

of transverse vorticity in boundary layers. In this analysis Briley and McDonald 

used an approximate form of the streamwise vorticity equation derived from 

secondary flow theory. In the present tip vortex problem the relevant physical 

process appears to be the generation of streamwise vorticity by application of 

a no-slip condition to the outer irrotational secondary flow around the tip 

and from the pressure to the suction surface of the airfoil. This process is 

modelled in the present analysis by the streamwise Cartesian component of the 

vorticity transport equation. The equation for vorticity conservation in com- 

pressible flow is given by Ref. 29 as 

(V*V)W 
VP 

= (zi*V)i - W(V*ii) -vx - ( ) P 

- vx 
I 

4 P $ VXW - -- 
3 P 

V(V*C) 1 (11) 

where v is the velocity vector, w is the vorticity vector,0 is density and v is 

viscosity. Since low Mach number flows are being considered at present, 

incompressible approximations are applied to the vorticity transport equation. 

Extension to compressible flow should present no major difficulties. 
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If incompressible flow is assumed and strcamwise diffusion is neglected, 

the conservation equation for the streamwise component of vorticity in Cartesian 

coordinates becomes 

(12) 

where u, v and w are velocity components in the x, y and z directions; 5, n and 

5 are the vorticity components in the x, y and z directions and v is the kinematic 

viscosity. A solution of Eq.(12) requires a knowledge of both n and 5. One 

possible approach would be to evaluate n and 5 from their values at previous 

stations and thus lag these quantities. Alternatively, these quantities could 

be updated iteratively. However, the present flow model assumes the major source 

of streamwise vorticity is that generated at the airfoil surface by application 

of the no-slip boundary conditions. This vorticity is then convected, diffused 

into the flow field and dissipated. The first three terms on the right-hand 

side of Eq. (12) represent vorticity changes due to stretching, contraction 

and rotation of stream tubes; at present, these terms are neglected. Since the 

computed results shown subsequently exhibit the experimentally observed tip flow 

field behavior, these terms may not play a major role in the tip vortex gener- 

ation process. However, they should be included in the analysis during future 

development. The equation governing the conservation of streamwise vorticity 

then becomes 

The vorticity transport equation is solved with appropriate boundary condi- 

tions to determine a distribution of the streamwise vorticity component at any 

given station. This component is related to the velocity field in the usual 

manner 

E I ;.z = f.vxu = i.vxtu,u, + c.vx p"vxQJ +F47xv,+ (14) 
P 
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Since the first and last terms on the right hand side of Eq. (14) are identically 

zero, the velocity - vorticity relation reduces to 

(15) 

which relates the streamwise vorticity component, (, and the vector surface 

potential, $I. Thus, in the present analysis the two cross flow momentum equations 

are replaced by the conservation equation for the streamwise vorticity equation, 

Eq. (13), and the vorticity - vector potential relation, Eq. (15). 

The Streamwise Momentum Equation 

The third equation used in the analysis is the streamwise momentum equation 

or the component of the momentum equation in the primary flow direction. If the 
^ I 

components of i in the i, j and k directions are given by u, v and w, respectively, 

then a streamwise momentum equation which neglects streamwise diffusion can be 

written 

au au au 
PUK + PVdy + pw= = - 

(16) 

The question then arises as to how to set the required pressure field. The 

required pressure field is taken as the pressure field associated with the 

inviscid velocity field, iuI, and therefore the pressure gradient term in 

Eq. (16) is given by 

dP au, 
-ET - --IT 

(17) 

The Continuity Equation 

The fourth equation required in the analysis is the continuity equation 

which is given in vector form as 
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or 

v*pPu,u, + v.pv,+ + p,v.vxPJI - 0 (19) 

Since the last term on the right hand side of Eq. (19) is identically zero the 

result can be written as 

v.pv,+ = -v.pLIu, (20) 

The Gas Law Equation -__-. ____ -- 

For incompressible flow the Eqs. (13). (15), (16) and (20) form the required 

governing set. For compressible flow an additional equation relating the density 

to the other flow variables is required. Such an equation is obtained from the 

perfect gas law 

p = pRT 

Assuming constant tot;31 temperature, Eq. (21) can be written as 

(21) 

(22) 

which relates density, pressure and velocity. 
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Boundary Conditions 

Of all the equations the boundary conditions for the streamwise momentum 

equation are the most straightforward. For this equation no-slip boundary n 
conditions are applied at the airfoil surface and u is set equal to iu~ at loca- 

tions far from the wing; on the inboard vertical boundary the normal derivative 

of u is set equal to zero. In summary (see Fig. 2) 

u=o on wing surface 

u ‘U I YlYy*x P Y v,,, # *=ZYAX 

du/f3z = 0 z=zYIN 

(23) 

The boundary conditions for the streamwise vorticity equation present a 

somewhat more difficult problem. In the present work vorticity was set to zero 

at all four outer boundaries; y = yMIN, y = yM, z = zW, z = zHIN. The first 

three boundaries are far removed from the airfoil and are located in regions 

expected to be devoid of vorticity, and thus the zero vorticity condition is 

valid on these boundaries. The fourth boundary, z = zMIN, is not as clear cut 

as the other three; in the present effort the assumption was made that this 

boundary be placed far enough inboard so that no cross flow boundary layer is 

present at this location. Another possibility (not yet investigated) would be 

t0 set at/az = 0 0n z = z 

condition used was 
MIN. However, in the present effort the boundary 

E-0 (24a) 

The correct boundary condition on the airfoil surface would be the value 

of vorticity leading to zero slip velocity on the airfoil surface. Since the 

slip velocity is the sum of the c 
QI 

and fi 
J, 

contributions, the correct boundary 

condition would be that value of F, which leads to 
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There appear to be several possible techniques for reaching this goal. One 

technique would use a lagged boundary condition at each streamwise station; i.e., 

at each station w would be calculated from values of JI and $I at the previous 

station, the derivative aw/ay would be calculated at the airfoil surface and this 

would be used as a wall vorticity boundary condition. Unfortunately based upon 

previous experience with two-dimensional stream function - vorticity analyses 

(Ref. 31) this technique is expected to be subject to a severe explicit stream- 

wise step size limit and, therefore, the technique of lagging the boundary 

condition was considered impractical. 

A second and much improved approach would solve the vector potential and 

vorticity equations as a coupled set, thus setting the required boundary con- 

dition implicitly and avoiding the stability restriction. Although future work 

is expected to address the coupled solution of vorticity and vector potential, 

the method used here approximately satisfies the secondary flow no-slip condition 

as follows: at each station the vorticity and the vector potential equations 

are solved. The vorticity boundary condition on the wing surface is obtained by 

assuming no-slip on the surface and evaluating the surface vorticity under this 

assumption. After solving for the vector potential, the secondary flow velocity 

us is evaluated and a modification is made to the vorticity field to approximately 

satisfy the no-slip condition. The modification is based upon the slip velocity 

and maximum spanwise velocity at each spanwise station. 

Consider any spanwise station, z, let the maximum spanwise velocity at that 

station be w MAx, let the slip velocity at a given point be wsLIP and let the 

spanwise velocity be ws(z,y). Then the corrected spanwise velocity distribution, 

wc(z,y) is computed from 

wsL,p u(z ,Y) W 
W,(bY) = wJz,y) 7 - 

[ YAX 'uI 
+ 1-y ( MAX )I (25) 
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It should be noted that when wSLIP = 0, w,(z,y) = ws(z,y). After determining 

wc(z,y), the additional streamwise vorticity a(wc(z,y) - w,(z,y>)/ay is added 

to the vorticity field. 

Although this approach is somewhat similar to simply lagging the boundary 

condition, the addition of a vorticity correction allows the calculation to 

proceed free of the stringent explicit stability step size limit associated with 

simply lagging the wall boundary condition. Since the corrected velocity occurs 

only as a result of not satisfying the no-slip boundary condition exactly, it is 

assumed to be solenoidal and is not allowed to contribute to the continuity 

balance. Finally, separate corrections are computed for the upper and lower 

surfaces. 

The third equation whose boundary conditions must be considered is the stream 

function equation. The treatment of boundary conditions is somewhat simplified 

if $ is redefined to remove the crossflow velocity due to the angle of incidence. 

Equation (6) is thus rewritten as 

vx9Jr’ + f”, (26) 

where v al is the free stream transverse velocity due to incidence. For simplicity, 

the prime in $’ is dropped. Boundary conditions then are specified as 

agday = 0 y = yMAX ) y - y,,, 

J/ =o 2.2 YIN 
(27) 

a+/az = 0 ’ = ‘MAX 

Thus wti is set to zero at upper, lower and inboard boundaries and v 
JI 

is set to 

V ,~ at the outboard boundary. On the airfoil surface 

w (28) 

-dz r-V (D 

and this boundary condition when applied in conjunction with the definition of 

ij JI 
in Eq. (26) sets the zero through-flow condition on the wing surface. 
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The final set of boundary conditions to be considered are those required for 

the potential equation, Eq. (20). The boundary conditions on $ are set as 

follows 

+=o Y=y,,, 1 Y=Y,,, 

#, = 0 t = ‘MAX 

a+/at = 0 ZfZ YIN 

On the airfoil surface 

w - =o 
dn 

(29) 

(30) 
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Summary of the Solution Procedure 

The solution is initiated by assuming distributions for all variables at 

some given plane and then marching downstream. In the present effort the initial 

plane is taken upstream of the airfoil leading edge; u I 
is taken as from the 

vortex lattice solution and JI and E, are taken to be zero. At each streamwise 

station the solution is initiated by solving the streamwise momentum equation, 

Eq. (16) and the gas law equation, Eq. (22) for the variables, u and p. The 

variables v and w appearing in the equation are taken as the variables at the 

previous station; i.e., they are lagged. 

After solving the streamwise momentum and gas law equations, attention is 

focused upon the streamwise vorticity transport equation, Eq.(13). The variable 

u is taken from the solution of the streamwise momentum equation and v and w 

are lagged. The boundary conditions on the wing are obtained by assuming no-slip 

on the wing and evaluating the surface vorticity under this assumption. The 

solution of the vorticity transport equation is followed by the solution of the 

vector potential equation, Eq. (15), to obtain I/J which in turn leads to values 

of ij 
J, 

via Eq. (26). 

The next step in the solution procedure solves the continuity equation, 

Eq. (20) for @, and u@ is obtained by differentiation. Finally, the composite 

secondary flow velocity i is obtained from s 

and the w - component of us is corrected via Eq. (25) to better satisfy the 

no-slip condition. The incremental vorticity generated by this correction 

is then added to the previously calculated vorticity field. 
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Turbulence Model 

Since most airfoil flows of practical interest are in the turbulent regime, 

it is appropriate to include a turbulence model in the formulation. Two turbu- 

lence models have been included in the code: the first is a simple eddy viscosity 

model, and the second is a two-equation model based upon the formulation of 

Jones and Launder (Ref. 32). The eddy viscosity model assumes an eddy viscosity 

distribution throughout the boundary layer of approximately parabolic form with 

the maximum eddy viscosity being set as a function of the displacement thickness 

Reynolds number as suggested by Clauser (Ref. 33). According to Clauser, the 

maximum value of eddy viscosity is given by 

‘MAX 
- =0.016- 

V v 
(32) 

The distribution within the boundary layer is taken as the following function 

of y/6 where d is the boundary layer thickness. 

c = EMAX y/6 I 0.2 

0.2 I y/8 10.5 

l = fMAX [I-y&]/O.5 0.5 L y/8 I 1.0 

(33) 

It should be noted that with the present eddy viscosity model turbulent 

viscosity is limited to regions in which the streamwise boundary layer is pres- 

ent. This is clearly an oversimplification and, as is commented upon subsequently, 

will give low values of vorticity diffusion. Although the long term goal of the 

tip vortex analysis should include a more sophisticated turbulence model of the 

two-equation type, successful implementation of such a model might require con- 

siderable effort which does not bear directly upon the tip vortex generation 

problem. Therefore, the simple eddy viscosity model was used in the present 

effort. 
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Computational Grid and Numerical Method 

The tip vortex problem requires high flov field resolution in the vicinity 

of the airfoil. This was obtained using an analytic coordinate transformation 

devised by Roberts (Ref. 34) in both the transverse and spanvise directions. 

The transformation was applied so as to concentrate transverse points in the 

vicinity of the wing and to concentrate spanwise points in the vicinity of the 

wing tip. Thus in the transverse direction separate Roberts transformations on 

the y-coordinate were applied between the line coinciding with the airfoil 

centerline and y and between the line coinciding with the airfoil centerline 

and yMINa In the spanwise direction transformations were carried out between 

the line coinciding with the airfoil tip location and zW and the airfoil tip 

location and zHIN. At the join points (the airfoil centerline) simple central 

differences were used to express derivatives. 

The numerical method itself has been described thoroughly elsewhere (Refs. 

26, 27 and 35) and, therefore, this description will not be repeated here in any 

detail. In brief, the governing partial differential equations are replaced by 

finite difference approximations. In general three-point central difference 

formulae are used for all spanwise and transverse derivatives and a two-point 

backward difference approximation is used for the streamwise derivatives. The 

streamwise momentum and gas law equation are solved as a coupled pair via 

linearized block ADI; linearized block ADI is discussed by McDonald and Briley 

(Ref. 35) and Briley and McDonald (Ref. 27). The vorticity transport equation 

is solved by a scalar AD1 scheme utilizing the technique of Douglas and Gunn 

(Ref. 36). The scalar and vector potential equations for 0 and J, are elliptic 

in the transverse plane and are solved given values for the right-hand side 

using scalar iterative ADI. Details of the ADI procedures are presented in 

Refs. 26, 27 and 35. 
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RESULTS 

The Computational Grid 

The three-dimensional viscous analysis for the tip vortex generation 

process was demonstrated by calculating the flow development in the vicinity 

of a ving tip. The calculation was made for a wing of uniform thickness and 

rectangular planform immersed in a uniform free stream at 6' incidence and 

the Reynolds number based on airfoil chord was 106. The computational 

grid in the cross flow plane was obtained via Roberts' transformations (Ref. 34) 

in both the transverse, y, direction and the spanvise, z, direction. The line 

defined by y-0, z=O (the x-axis) was taken to lie at the intersection of the x-y 

plane coinciding with the airfoil tip location and the x-z plane coinciding with 

the airfoil centerplane location. The Roberts' transformation was performed so 

as to concentrate x-y planes in the vicinity of the airfoil tip and x-z planes 

in the vicinity of the airfoil surface. The cross-sectional computational plane 

was constructed as a 19x19 grid with points located at the following locations. 

TABLE I. - Secondary Plane Grid Point Locations 

Pt. No. 1 2 3 4 5 6 7 

y/c or z/c -.25 -.193 -.141 -.098 -.065 -.041 -.024 

Pt. No. 8 9 10 11 12 13 14 

y/c or z/c -.012 -.005 0 .005 .012 .024 .041 

Pt. No. 15 16 17 18 19 

y/c or z/c -065 .098 .141 .193 .25 , 

The wing thickness was taken to be 0.01~; i.e., the wing was taken to be three 

grid points thick. In the streamwise directi,on a nonuniform grid which concen- 

trated points in the airfoil leading edge region was used. The streamwise grid 

points were located as follows: 
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TABLE II. - Streamwise Grid Point Locations 

Pt. No. 1 2 3 4 5 6 7 

x/c -0.1 -0.05 0.01 0.02 0.03 0.04 0.05 

Pt. No. 8 9 10 11 12 13 14 

x/c 0.07 0.09 0.11 0.13 0.15 0.19 0.23 

7 

Pt. No. 15 16 17 18 19 20 21 

x/c 0.28 0.33 0.38 0.43 0.48 0.54 0.60 

Pt. No. 22 23 24 25 26 27 28 

x/c 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

where x/c = 0 is the location of the airfoil leading edge. The secondary flow 

plane grid points in the vicinity of the tip are shown in Fig. 3. 

Further Computational Considerations 

The calculation was initiated at x/c = -0.1 which is upstream of the 

airfoil leading edge. At the initial plane the streamwise Velocity was set 

equal to the velocity predicted by the vortex lattice method and the streamwise 

vorticity was set equal to zero. Upon reaching the airfoil, no-slip conditions 

at the airfoil surface were applied to the streamwise momentum equation and this 

sudden application of the no-slip boundary did not lead to any numerical problems. 

In contrast, however, a special technique was required for the vorticity trans- 

port equation upon reaching the airfoil. 

At the initial plane upstream of the airfoil, the vorticity is taken to be 

zero, and no vorticity is generated until the airfoil is reached. Rather than 
solve the vorticity transport equation at the first station at which the airfoil 

is encountered, the vorticity is assumed to be zero at this location. The 
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stream function equation then is solved, leading to a prediction of an irrota- 

tional secondary flow field which has a significant spanwise slip velocity. A 

boundary layer correction is then applied tb this secondary flow which decreases 

the spanwise velocity to zero at the airfoil surface and generates streamuise 

vorticity. The streamwise vorticity generated in this manner is taken as the 

vorticity at the first streamwise plane containing the airfoil; at subsequent 

streamwise locations the vorticity is determined from the vorticity conservation 

equation. 

The calculation was initiated as a constant viscosity flow with the viscosity 

being equal to the expected wall region eddy viscosity and transition to the usual 

simple eddy viscosity was assumed to occur at x/c = 0.19. Downstream of x/c = 0.19 

the simple eddy viscosity model given by Eqs. (32) and (33) was used. 

The Predicted Tip Vortex Generation Mechanism 

The results obtained under the present effort fall into two categories; 

(1) detailed numerical predictions and (ii) a qualitative understanding of the 

tip vortex generation mechanism. Since an understanding of the generation 

mechanism may aid the reader in understanding the detailed results, this gener- 

ation mechanism, as predicted by the analysis, is discussed first. Upon 

encountering the wing at incidence, the inviscid potential flow generates a 

pressure field leading to high pressures below and low pressures above the 

airfoil. Obviously, as the tip itself is approached, the pressures on the upper 

and lower sides must become equal. The pressure imbalance, thus generated, drives 

an irrotational flow in the secondary flow plane from the pressure side outboard, 

around the tip and finally inboard on the suction side. This secondary flow 

pattern is required to obey the no-slip condition at the airfoil surface and this 

no-slip condition generates positive vorticity on both the upper and lower 

surfaces. Due to the secondary flow pattern, the vorticity generated on the 

pressure surface is convected outboard and the vorticity generated on the suction 

surface is convected inboard. 

As the flow proceeds downstream, the vorticity generated on the pressure 

surface is convected to the tip, shed off the tip and convected and diffused 

in a general upward and inboard direction. At some streamwise location the 

amount of positive vorticity appearing above the suction surface is sufficient to 
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create a counterclockwise, circular, secondary flow velocity pattern above the 

suction surface; such that the spanwise velocity in the innnediate vicinity of 

the airfoil suction surface is then directed outboard. However, since the no-slip 

condition must be satisfied, a region of negative vorticity appears adjoining 

the tip suction surface. 

At approximately the same streamwise location, the positive vorticity which 

has been shed from the pressure surface and convected upward forms a "tongue-like" 

region of free vorticity above the suction surface and clearly distinct from the 

cross flow boundary layer. As is shown subsequently in the present calculation, 

the appearance of this free vorticity occurred following the appearance of the 

negative vorticity region. 

Detailed Results 

The results of the calculation procedure are shown in Figs. 4-35. Due to 

the scarcity of experimental data, it is difficult to make a definitive assess- 

ment of the prediction at the present time; however, the data of Chigier and 

Corsiglia (Ref. 4) can be used for guidance. The data of Ref. 4 was taken for a 

NACA 0015 airfoil, immersed in a fluid at chord Reynolds number of 9.5x105 and 

at an incidence angle of 12". Although these conditions obviously differ from 

those of the case considered here, both cases represent high Reynolds number 

airfoils with rectangular planform tip shapes and both cases are for flows below 

the sta'll condition. Thus the data of Ref. 4 can serve as a suitable qualitative 

guide for assessing the predicted results. 

A summary of the computed results is presented in Fig. 4 which shows the 

vortex location and the maximum free vorticity magnitude. As is shown in Figs. 

5-11, the streamwise vorticity consists of two parts; one portion is clearly 

associated with vorticity in the cross-flow boundary layers on both the suction 

and pressure airfoil surfaces. The second portion lies outside the cross flow 

boundary layers and results from vorticity shed at the airfoil tip; this is 

termed the free vorticity. Figure 4 shows the location of the center of the free 

vorticity as a function of streamwise distance; this location has been taken 

from Figs. 5-11. 
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As shown in the upper portion of Fig. 7, no definite free vortex appears 

until x/c > 0.3; upstream of this location, the vorticity appears to be concen- 

trated in the boundary layers. After its appearance the core moves away from 

the airfoil surface and inboard. At the last station considered, the core is 

located at y/c = 0.06 and z/c = -0.01. The data of Ref. 4 for the NACA 0015 

airfoil at 12 deg. incidence shows a vortex to first appear at x/c w 0.25; which 

is in reasonable agreement with the current prediction; the data then shows the 

core to move away from the surface to a location y/c ~0.09 and inboard to a 

location z/c w -0.05. Although this data shows differences with the present 

prediction, particularly insofar as spanwise location is concerned, good quali- 

tative agreement exists between the data of Ref. 4 and the predictions of the 

current analysis. Furthermore, since higher incidence angle will be accompanied 

by a stronger pressure differential from the pressure to the suction side of the 

airfoil, it is expected that higher incidence will produce a stronger flow around 

the airfoil tip; i.e., a secondary flow having both larger normal and spanwise 

velocity components. This stronger secondary flow would be expected to convect 

the shed vorticity both further above the airfoil and further inboard from the 

arifoil tip. Thus the difference between the current prediction and the data 

of Ref. 4 is qualitatively as expected. 

The lower portion of Fig. 4 shows the magnitude of the maximum vorticity 

appearing in the free vortex. As can be seen, this continuously decreases due 

to viscous effects which tend both to diffuse vorticity from regions of high to 

low vorticity concentration and to decrease the total amount of vorticity in the 

field. It should be noted that with the present turbulence model, the turbu- 

lent viscosity in the vortex core is underestimated and hence the diffusion 

of vorticity in the core region is also underestimated. The vorticity has been 

normalized by u-II/c where urn is the u component of velocity at upstream infinity 

and c is the chord. 

Vorticity contours at selected streamwise stations are shown in Figs. 5-11. 

The contours at x/c = 0.11 are shown in Fig. 5. At this early location the 

streamwise vorticity is associated almost entirely with the cross flow boundary 

layers on the upper and lower airfoil surfaces and at the tip. The free stream 
is basically an irrotational flow field. The contours at x/c = 0.19, the last 

laminar station, are presented in Fig. 6. At this location there appears to be 
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a concentration of positive vorticity in the tip region with some vorticity in 

the free stream and a small area of negative vorticity appears just above the 

airfoil surface for the first time. This appearance is explained as follows. 

T& positive vorticity collecting above the suction surface in the tip region 

causes the free stream in this region to be rotational. This rotational free 

stream leads to a counterclockwise rotating fluid pattern above the suction 

surface. However, the fluid must obey the no-slip condition on the airfoil 

surface and imposition of the no-slip condition to the secondary flow generates 

negative vorticity at the airfoil surface which then diffuses into the flow 

field. The net result is a flow pattern in which the spanwise flow is outboard 

below the airfoil. Above the airfoil the flow is inboard except in the immediate 

vicinity of the airfoil where it is outboard. The result is general convection 

of fluid around the tip from pressure to suction surface upon which is imposed 

a "circular" type of flow pattern above the airfoil and in the vicinity of the 

tip region. It should be noted that this negative vorticity is in a region of 

outward spanwise flow and the possibility of the counter-rotating vorticity being 

carried outboard of the tip exists. Such a phenomenon has been observed experi- 

mentally as a secondary vortex. 

The streamwise location x/c = 0.19 is the first location at which this 

"circular" flow pattern is evident and this may be considered the location at 

which the vortex first appears. However, a more striking example of free 

vorticity is shown in Fig. 7 which presents the contours at x/c = 0.33. At this 

location areas of strong vorticity are clearly being convected from the tip 

region above the airfoil and inboard. The general picture of the generation 

process being presented appears to be convection of the pressure surface cross 

flow boundary layer off the tip region, upward and then inboard. The pattern 

continues in Figs. 8, 9 and 10 as the flow progresses to x/c = 0.75. From this 

location to the trailing edge the major effect appears to be the dissipation of 

vorticity and continued upward convection. 

The possibility of the appearance of a secondary counter-rotating vortex has 

been mentioned previously and an examination of Fig. 11 shows the appearance of 

such a region. As seen in this figure, a small region of negative vorticity 

has migrated via convection and diffusion processes to the immediate vicinity 

of the airfoil tip and may indicate the formation of a secondary vortex. 
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Contours of streamwise velocity are presented in Figs. 12-18. In general, 

these figures show the growth of the streamwise boundary layers. At inboard 

locations, the pressure surface boundary layers are thicker than the suction 

surface boundary layers; this result is consistent with the imposed pressure 

distribution obtained from the vortex lattice calculation and the two-dimensional 

boundary layers. However, in the tip region where the flow is strongly three- 

dimensional, the viscous region on the suction surface is thicker than that on 

the pressure surface. 

As the flow proceeds downstream to x/c = 0.33, the major development is the 

expected thickening of the viscous layers. However at x/c = 0.48 (Fig. 15), a 

new development appears. In the vicinity of the tip suction surface a thickening 

of the outer portion of the boundary layer appears. Although the 0.4 isovel 

moves towards the airfoil surface indicating a thinning of the inner part of the 

boundary layer, the 0.9 isovel moves away from the airfoil indicating a thicken- 

ing on this part of the airfoil. This clearly shows a behavior not observed in 

usual two-dimensional boundary layers. 

A set of plots showing secondary flow patterns predicted by the calculation 

is presented in Figs. 19-25. In these figures the secondary flow velocities are 

the spanwise velocity, w, and the velocity normal to the free stream velocity 

rather than the velocity normal to the airfoil. Thus in the absence of no-slip 

effects, the value of v at the surface would be approximately u sina. (See the 

sketch on the figure). Figure 19 presents the secondary flow pattern at 

x/c = 0.11. At this early location the vortex has not yet formed as the secondary 

flow pattern simply shows flow around the tip from the suction surface to the 

pressure surface. The next plot, Fig. 20, shows the vortex beginning to form 

at x/c = 0.19; this result is consistent with the vorticity plots and the core 

defined by the velocity plots at this station, if one exists, appears to be very 

close to the suction surface corner point. Figures 21-25 show the further 

development of the secondary flow vortex as well as the upward movement of core 

as defined by the velocity plots. At these latter stations the secondary flow 

shows a definite circular flow pattern; at x/c = 0.90 the secondary flow has an 

average circumferential velocity of approximately 0.06 urn. The measurements of 

Ref. 4 at the airfoil trailing edge show a tangential velocity of approximately 

0.2 u,, however, the Ref. 4 data is for a higher angle of incidence (12 deg vs. 
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6 deg) and thus the generation of a strqnger vortex in this case is to be 

expected. 

Secondary flow patterns in the planes of a coordinate system aligned with 

the wing are presented in Figs. 26-30. When viewed in this system the secondary 

velocity vectors first form a circular pattern at x/c = 0.33 and a more pronounced 

vortex develops aa the flow proceeds downstream. In this plane the velocity 

pattern is not nearly as circular as was the case presented in Figs. 19-25. 

Nevertheless a definite vortex-type flow pattern is present. It is interesting 

to note that the vortex core as defined in Figs. 26-30 shows definite inboard 

movement as the flow progresses and by x/c = 0.90, the core appears to be at 

z/c = -0.02 or two percent chord inboard from the tip. This is in contrast to 

the core location which would be predicted from an examination of the alternate 

set of secondary flow figures. If the core locations are obtained for the 

streamwise vorticity contours, the prediction of spanwise core location would 

fall between the predictions obtained from Figs. 19-25 and the predictions 

obtained from Figs. 26-30. 

In this regard it also should be noted that the prediction of vortex core 

spanwise location from experimental data may also be uncertain. For example if 

the spanwise core location for the data of Ref. 4 is obtained from secondary flow 

velocity profiles, at the trailing edge the core would be placed at z/c w-0.05. 

If the location is obtained from the surface pressure data of Spivey and Moorehouse 

(Ref. 3) as presented in Ref. 4, the core location at the trailing edges would be 

placed at z/c w -0.10. In this latter case the same wing at the same angle of 

attack (12") was used as in Ref. 4; however, the tunnel velocity was doubled. 

Although it is possible that doubling the tunnel velocity would change the 

vortex path, this does not seem to be a likely explanation. A more likely explan- 

ation would be that the locus of the surface pressure minimum is not directly 

beneath the vortex core. In either case both Refs. 3 and 4 show the vortex 

location to be further inboard than would be predicted by the present calcula- 

tions. However, the present calculation is for a 6" incidence and thus the 

secondary flow and the accompanying convection velocities are less than in the 

cases where experimental data was obtained and the resulting discrepancy is not 

unexpected. 
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Results indicating the predicted velocity profiles through the vortex core 

are presented in Figs. 31-34. In each case the vortex core location was estimated 

from the velocity plots of Figs. 19-25 and the velocity distribution on a span- 

wise line through the core center was used to obtain the results. Since the 

present case is not for the same conditions as the data of Ref. 4 cthe major 

discrepancy being 6 deg incidence angle in the present case and 12 deg incidence 

angle in Ref. 4), a quantitative comparison between predictions and data cannot 

be made. Nevertheless, qualitative similarity between the two sets of results 

is apparent. In both cases, the vortex core increases in size and the maximum 

tangential velocity decreases in magnitude as the flow progresses downstream. 

The data of Chigier and Corsiglia (Ref. 4) shows the core increasing from 

r C = 0.02 at x/c = 0.5 to rc/c = 0.09 at x/c = 1.0. The present results show 

r C 
= 0.023 at x/c = 0.5 and rc/c = 0.060 at x/c = 1.0. The predicted development 

of the core radius is shown in Fig. 35. 
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CONCLUDING REMARKS 

Under the present effort a three-dimensional forward marching viscous flow 

analysis has been developed for the tip vortex generation process. In contrast 

to previous tip vortex analyses which either use an inviscid model or concentrate 

upon the flow downstream of the airfoil trailing edge, the present analysis 

focuses upon the viscous flow generation process itself. In the present analysis 

the transverse and spanwise momentum equations are replaced by a streamwise 

vorticity equation and this equation is solved in conjunction with a streamwise 

momentum equation and a continuity equation under an imposed streamwise pressure 

gradient which must be obtained from an external source. 

The procedure has been used to calculate the tip flow region for a wing of 

rectangular planform immersed in a stream of chord Reynolds number equal to 106 

at an incidence of 6 degrees. The effort focused upon two items, (i) the 

mechanism of the generation process and (ii) the quantitative results. Insofar 

as the generation mechanism is concerned, the analysis predicts the mechanism 

to reside in the cross flow boundary layers. When a wing is immersed in a fluid 

at a non-zero incidence angle a pressure differential develops between the upper 

and lower surfaces. This pressure imbalance causes a flow outboard on the 

pressure surface, upward at the tip and inboard on the suction surface. Since 

this inviscid flow pattern must satisfy a no-slip condition cross flow boundary 

layers accompanied by streamwise vorticity are generated at the airfoil surface. 

The pressure surface cross flow boundary layer is convected outboard and separates 

at the tip becoming free vorticity unattached to the wing. This vorticity is 

then convected upward and inboard over the suction surface and forms the tip 

vortex. This picture of the generation process which is predicted by the 

present analysis is consistent with experimental observations. 

Insofar as the qualitative results are concerned the only guide is the 

12 degree rectangular wing planform data of Chigier and Corsiglia (Ref. 4). 

The present predictions of vortex appearance, path, strength and secondary flow 

field are consistent with those experimental results. 

Although the present analysis has given a realistic picture of the tip 

vortex formation process, the present effort has uncovered several areas where 

further development would be beneficial. These are extension of all equations 
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to compressibility, an exact satisfaction of the cross flow boundary layer 

no-slip condition, further turbulence modeling, inclusion of vortex stretching 

and rotation terms in Eq. 12 and inclusion of wing thickness effects. However, 

even without further development in these areas, the results obtained for the 

6 degree rectangular planform case are very encouraging as they have shown the 

present analysis to be capable of analyzing the tip vortex generation process. 
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Figure 31. - Velocity distribution through vortex at x/c -0.48. 



0.10 

0.05 

0 

-0.05 

-0.10 

r 

-0.10 -0.05 0 0.05 

Spanwise location, z/C 

0.10 0.15 
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Figure 33. - Velocity distribution through vortex at x/c -0.75. 
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